

The 12th Symposium on Conformal and Probabilistic Prediction with Applications
Limassol, Cyprus
September 12th – 15th 2023

Enterprise Disk Drive Scrubbing Based on Mondrian Conformal Predictors

Rahul Vishwakarma+

Jinha Hwang+

Soundouss Messoudi°

Ava Hedayatipour+

California State University Long Beach, USA +

HEUDIASYC - UMR CNRS 7253, Université de Technologie de Compiègne, France •

Introduction

Introduction

- Data centers are intricate ecosystems with diverse storage devices spread across multiple locations.
- Managing business becomes challenging due to the complexity of each individual storage component.
- Inadequate management of storage components can lead to data loss and business disruption.
- Proactive monitoring of storage component health is essential, with e.g. disk drive scrubbing.

Data center illustration

Which disks to scrub? When to scrub?

Disk Scrubbing

What is Disk Scrubbing?

- Error correction technique :
 - Periodically checks for inconsistencies in data, then corrects them.
 - Applied to disk arrays, memory, file systems, ...

Hard Disk Drive

- Targeted problems :
 - Data integrity issues.
 - Degraded system performance.
 - Reduced drive lifespan.
 - Regulatory and compliance issues.

Solid State Drive

Resource Consumption

- Data scrubbing is resource-intensive, consuming CPU, memory, and storage I/O.
- Frequent scrubbing strains system resources, impacting system performance.

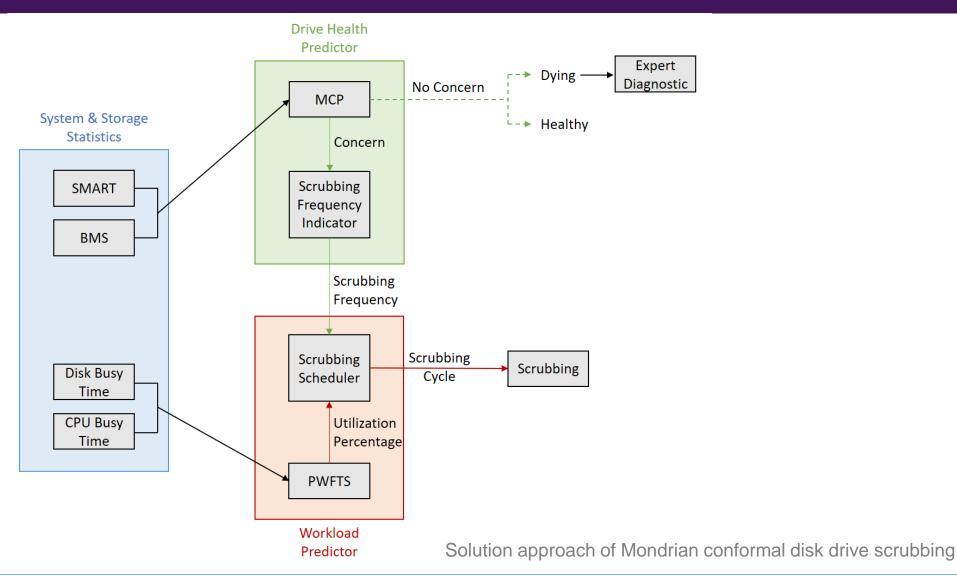
Drive Lifespan Impact

- Frequent scrubbing can accelerate wear and tear on disk drives.
- Counterproductive if it accelerates drive degradation instead of preventing it.

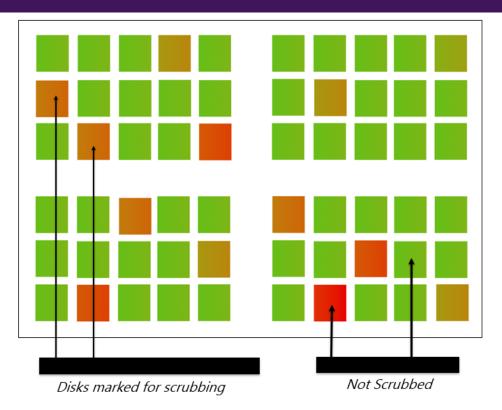
Workload Impact

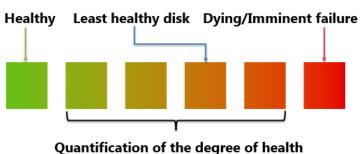
- Excessive scrubbing can affect the performance of concurrent workloads.
- May lead to slowdowns or interruptions in critical operations.

Quest for a fine balance between scrubbing frequency and system reliability.


Approach: Mondrian Conformal Disk Drive Scrubbing

>


>


>

Solution Architecture

Which disks to scrub: Drive Health Predictor

Selective scrubbing

- Eliminate "no concern" disks (healthy / dying).
- Identify the concerned disks.

Degree of health

Good, medium or poor.

Scrubbing cycle

Low, medium, high (respectively).

Mondrian Conformal Prediction

Mondrian Conformal Prediction

Why ?

In most cases, drive health prediction is highly imbalanced.

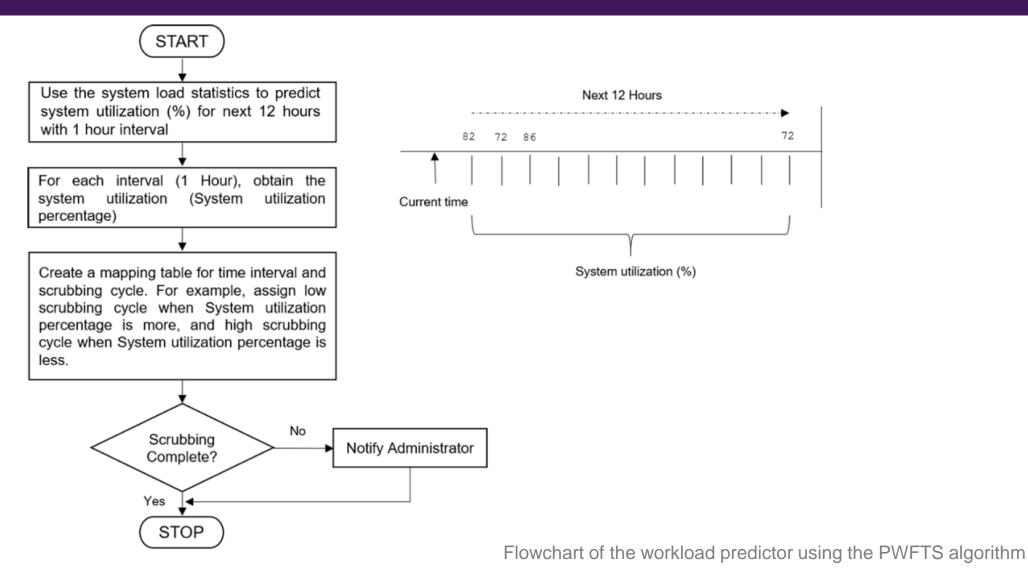
$$p_{n+1}^{C_k} = \frac{|\{i \in 1, \dots, q : y_i = C_k, \alpha_{n+1}^{C_k} \le \alpha_i\}|}{|\{i \in 1, \dots, q : y_i = C_k\}|}$$

>

How ?

- Binary classification.
- Confidence score as a health score.

Confidence
$$(x) = \sup\{1 - \epsilon : |\Gamma_{\epsilon}(x)| \le 1\}.$$


Disk health	Scrubbing frequency	Health score
Best	LOW	[95%, 99[
Medium	MEDIUM	[80%, 95[
Poor	HIGH	< 80%

Mapping of the disk health with the scrubbing frequency based on health score.

>

>

When to scrub: Workload Predictor

Introduction

Experiments

Open-source Baidu dataset

Seagate ST31000524NS* (HDD).

Column No	Feature	Description
1	Index of the disk serial number	Ranging from 1 to 23395
2	Value of SMART ID $\#1$	Raw Read Error Rate
3	Value of SMART ID $\#3$	Spin Up Time
4	Value of SMART ID $\#5$	Reallocated Sectors Count
5	Value of SMART ID $\#7$	Seek Error Rate
6	Value of SMART ID #9	Power On Hours
7	Value of SMART ID $\#187$	Reported Uncorrectable Errors
8	Value of SMART ID $#189$	High Fly Writes
9	Value of SMART ID $#194$	Temperature Celsius
10	Value of SMART ID $#195$	Hardware ECC Recovered
11	Value of SMART ID $\#197$	Current Pending Sector Count
12	Raw Value of SMART ID $\#5$	Reallocated Sectors Count
13	Raw Value of SMART ID $\#197$	Current Pending Sector Count
14	Class label of the disk	0 for failed and 1 for functional

Features' description for the Open-source Baidu dataset.

^{*} Hdds dataset (baidu inc..), Jan 2023. https://www.kaggle.com/ datasets/drtycoon/hdds-dataset-baidu-inc.

Results

 MCP identifies more disks of the minority class, but with a decrease in the number of disks correctly classified as healthy...

		kl	NN	M	CP
	Predicted	0	1	0	1
Actual	0	51314	547	51669	537
	1	975	296689	28703	268616

Comparison of confusion matrix results for disk drive classification using kNN and MCP.

But by considering the health score:

Heath score	0.998 - 0.9985	0.9985 - 0.999	0.999 - 0.9995	0.9995 and 1
Disk count	16468	62928	63087	126244

The number of relatively healthy drives based on the health score intervals.

Only 22.7% of the number of disks is scrubbed.

Real life datasets

■ **Data 1:** 2015-01-01——2019-07-01, Hitachi drives

Data 2: 2015-01-01——2019-07-01, 3T ST330006CLAR3000

Confidence	Data_set_one	Data_set_two
>=99%	14732	8385
>=98%, <99%	2401	144
>=97% , <98%	5688	55
>=96%, <97%	2257	20
>=95%, <96%	1058	19
>=94%, <95%	680	9
>=93%, <94%	422	4
>=92%, <93%	94	2
>=91%, <92%	0	0
>=90%, <91%	0	0
<90%	0	0
total	27332	8638

Experiments on real life data centers.

Only 12600 (data 1) and 253 (data 2) disks are scrubbed, with different frequencies of scrubbing.

Conclusions and perspectives

Conclusions

New Scrubbing Approach

- Introduces a fine-grained method for selecting drives to be scrubbed.
- Enhances the existing failure analysis engine with an algorithm-agnostic Mondrian conformal predictor.

Confidence-Based Health Ranking

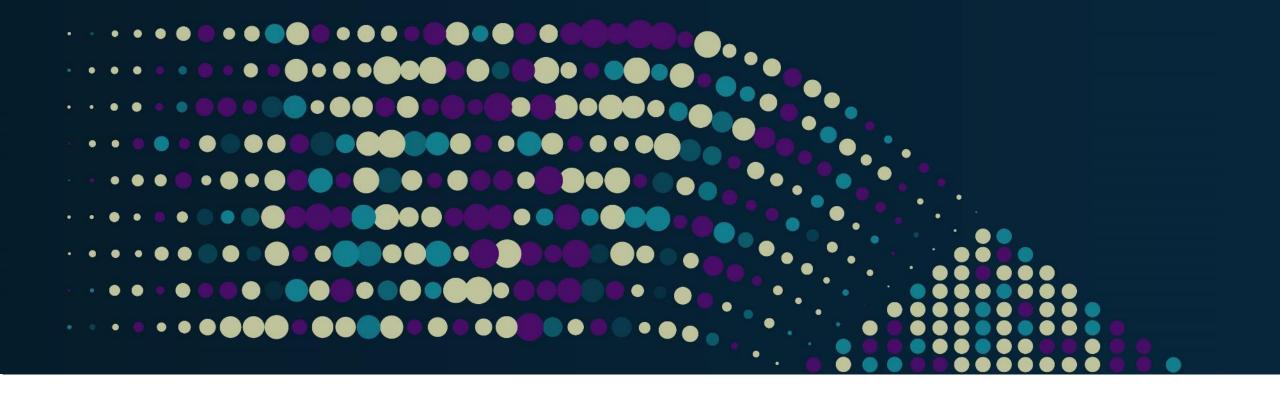
- Translates prediction confidence into a disk health ranking mechanism.
- Transforms this ranking into a scrubbing frequency depending on the user's preferences.

Optimized Scrubbing Schedule

- Uses n-step ahead system load prediction.
- Optimizes disk scrubbing for improved efficiency.

Energy saving and reduced carbon footprint for data centers

Perspectives


Introduction

Adapt the health drive predictor over time and system utilization.

Improve the current approach by exploring other non-conformity measures.

Apply the approach in large-scale data centers, preferably in real-life cases.

Consider Venn-Abers predictors with calibrated probabilities for predictions.

Thank you for your attention